Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Evolution and Computational Learning Theory: A survey on Valiant's paper (1312.4599v1)

Published 17 Dec 2013 in cs.LG

Abstract: Darwin's theory of evolution is considered to be one of the greatest scientific gems in modern science. It not only gives us a description of how living things evolve, but also shows how a population evolves through time and also, why only the fittest individuals continue the generation forward. The paper basically gives a high level analysis of the works of Valiant[1]. Though, we know the mechanisms of evolution, but it seems that there does not exist any strong quantitative and mathematical theory of the evolution of certain mechanisms. What is defined exactly as the fitness of an individual, why is that only certain individuals in a population tend to mutate, how computation is done in finite time when we have exponentially many examples: there seems to be a lot of questions which need to be answered. [1] basically treats Darwinian theory as a form of computational learning theory, which calculates the net fitness of the hypotheses and thus distinguishes functions and their classes which could be evolvable using polynomial amount of resources. Evolution is considered as a function of the environment and the previous evolutionary stages that chooses the best hypothesis using learning techniques that makes mutation possible and hence, gives a quantitative idea that why only the fittest individuals tend to survive and have the power to mutate.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.