Papers
Topics
Authors
Recent
Search
2000 character limit reached

A partition identity and the universal mock theta function $g_2$

Published 21 Nov 2013 in math.NT | (1311.5483v1)

Abstract: We prove analytic and combinatorial identities reminiscent of Schur's classical partition theorem. Specifically, we show that certain families of overpartitions whose parts satisfy gap conditions are equinumerous with partitions whose parts satisfy congruence conditions. Furthermore, if small parts are excluded, the resulting overpartitions are generated by the product of a modular form and Gordon and McIntosh's universal mock theta function. Finally, we give an interpretation for the universal mock theta function at real arguments in terms of certain conditional probabilities.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.