Papers
Topics
Authors
Recent
Search
2000 character limit reached

Partitions with parts separated by parity: conjugation, congruences and the mock theta functions

Published 23 Jun 2023 in math.NT and math.CO | (2306.13309v1)

Abstract: Noting a curious link between Andrews' even-odd crank and the Stanley rank, we adopt a combinatorial approach building on the map of conjugation and continue the study of integer partitions with parts separated by parity. Our motivation is twofold. First off, we derive results for certain restricted partitions with even parts below odd parts. These include a Franklin-type involution proving a parametrized identity that generalizes Andrews' bivariate generating function, and two families of Andrews--Beck type congruences. Secondly, we introduce several new subsets of partitions that are stable (i.e., invariant under conjugation) and explore their connections with three third order mock theta functions $\omega(q)$, $\nu(q)$, and $\psi{(3)}(q)$, introduced by Ramanujan and Watson.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.