Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 44 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Polytope Expansion of Lie Characters and Applications (1311.3913v1)

Published 14 Nov 2013 in math.RT, math-ph, and math.MP

Abstract: The weight systems of finite-dimensional representations of complex, simple Lie algebras exhibit patterns beyond Weyl-group symmetry. These patterns occur because weight systems can be decomposed into lattice polytopes in a natural way. Since lattice polytopes are relatively simple, this decomposition is useful, in addition to being more economical than the decomposition into single weights. An expansion of characters into polytope sums follows from the polytope decomposition of weight systems. We study this polytope expansion here. A new, general formula is given for the polytope sums involved. The combinatorics of the polytope expansion are analyzed; we point out that they are reduced from those of the Weyl character formula (described by the Kostant partition function) in an optimal way. We also show that the weight multiplicities can be found easily from the polytope multiplicities, indicating explicitly the equivalence of the two descriptions. Finally, we demonstrate the utility of the polytope expansion by showing how polytope multiplicities can be used in the calculation of tensor product decompositions, and subalgebra branching rules.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.