Binary Constraint System Games and Locally Commutative Reductions (1310.3794v2)
Abstract: A binary constraint system game is a two-player one-round non-local game defined by a system of Boolean constraints. The game has a perfect quantum strategy if and only if the constraint system has a quantum satisfying assignment [R. Cleve and R. Mittal, arXiv:1209.2729]. We show that several concepts including the quantum chromatic number and the Kochen-Specker sets that arose from different contexts fit naturally in the binary constraint system framework. The structure and complexity of the quantum satisfiability problems for these constraint systems are investigated. Combined with a new construct called the commutativity gadget for each problem, several classic NP-hardness reductions are lifted to their corresponding quantum versions. We also provide a simple parity constraint game that requires $\Omega(\sqrt{n})$ EPR pairs in perfect strategies where $n$ is the number of variables in the constraint system.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.