Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The status of the quantum PCP conjecture (games version) (2403.13084v1)

Published 19 Mar 2024 in quant-ph and cs.CC

Abstract: In classical complexity theory, the two definitions of probabilistically checkable proofs -- the constraint satisfaction and the nonlocal games version -- are computationally equal in power. In the quantum setting, the situation is far less clear. The result MIP* = RE of Ji et. al. (arXiv:2001.04383) and refinements by Natarajan and Zhang (arXiv:2302.04322) show that multiprover interactive proof systems with polylogarithmically long messages can solve any decision problem in RE, including undecidable problems like the halting problem. These results show that any connection between the "constraint satisfaction" or "Hamiltonian" quantum PCP conjecture and nonlocal games must involve restricting the players in the game to be computationally efficient. This note contains two main results: (1) we give a "quantum games PCP for AM" in the form of a new construction of a succinct MIP* protocol with efficient provers for the canonical AM-complete problem, and (2) we explain an error in the energy amplification procedure of Natarajan and Vidick (arXiv:1710.03062) which invalidates their claim to have constructed a quantum games PCP for a QMA-complete problem. In surveying the obstacles remaining towards a quantum games PCP for QMA, we highlight the importance and challenge of understanding gap amplification for Hamiltonians even when locality is replaced by much weaker constraints, such as bounds on the "Pauli spectrum" of the Hamiltonian. We hope these questions will motivate progress towards new "baby versions" of Hamiltonian quantum PCP conjecture.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. An area law for 2d frustration-free spin systems, 2021. doi:10.48550/ARXIV.2103.02492.
  2. Guest column: The quantum pcp conjecture. SIGACT News, 44(2):47–79, June 2013. doi:10.1145/2491533.2491549.
  3. NLTS hamiltonians from good quantum codes. In Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023, page 1090–1096, New York, NY, USA, 2023. Association for Computing Machinery. doi:10.1145/3564246.3585114.
  4. From communication complexity to an entanglement spread area law in the ground state of gapped local hamiltonians. https://arxiv.org/abs/2004.15009, 2020.
  5. An area law and sub-exponential algorithm for 1D systems, 2013. arXiv preprint arXiv: 1301.1162.
  6. Proof verification and the hardness of approximation problems. J. ACM, 45(3):501–555, May 1998. doi:10.1145/278298.278306.
  7. Improved one-dimensional area law for frustration-free systems. Physical Review B, 85:195145, May 2012. doi:10.1103/PhysRevB.85.195145.
  8. Quantum NP - A Survey, 2002, arXiv:arXiv:quant-ph/0210077.
  9. Circuit Lower Bounds for Low-Energy States of Quantum Code Hamiltonians. In Mark Braverman, editor, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022), volume 215 of Leibniz International Proceedings in Informatics (LIPIcs), pages 6:1–6:22, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ITCS.2022.6.
  10. Probabilistic checking of proofs: A new characterization of np. J. ACM, 45(1):70–122, January 1998. doi:10.1145/273865.273901.
  11. Non-deterministic exponential time has two-prover interactive protocols. computational complexity, 1(1):3–40, 1991. doi:10.1007/BF01200056.
  12. Quantum PCPs: on adaptivity, multiple provers and reductions to local hamiltonians, 2024, arXiv:2403.04841.
  13. Complexity classification of local hamiltonian problems. SIAM Journal on Computing, 45(2):268–316, 2016, arXiv:https://doi.org/10.1137/140998287. doi:10.1137/140998287.
  14. Irit Dinur. The pcp theorem by gap amplification. J. ACM, 54(3):12–es, June 2007. doi:10.1145/1236457.1236459.
  15. Interactive proofs and the hardness of approximating cliques. J. ACM, 43(2):268–292, mar 1996. doi:10.1145/226643.226652.
  16. A multiprover interactive proof system for the local hamiltonian problem. In Proceedings of the 2015 Conference on Innovations in Theoretical Computer Science, ITCS ’15, page 103–112, New York, NY, USA, 2015. Association for Computing Machinery. doi:10.1145/2688073.2688094.
  17. Delegating computation: Interactive proofs for muggles. J. ACM, 62(4), sep 2015. doi:10.1145/2699436.
  18. Matthew B Hastings. An area law for one-dimensional quantum systems. Journal of Statistical Mechanics: Theory and Experiment, 2007(08):P08024, 2007.
  19. Johan Håstad. Some optimal inapproximability results. J. ACM, 48(4):798–859, jul 2001. doi:10.1145/502090.502098.
  20. In search of an easy witness: exponential time vs. probabilistic polynomial time. Journal of Computer and System Sciences, 65(4):672–694, 2002. doi:https://doi.org/10.1016/S0022-0000(02)00024-7. Special Issue on Complexity 2001.
  21. A multi-prover interactive proof for nexp sound against entangled provers. In 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science, pages 243–252, 2012. doi:10.1109/FOCS.2012.11.
  22. Zhengfeng Ji. Compression of quantum multi-prover interactive proofs. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, page 289–302, New York, NY, USA, 2017. Association for Computing Machinery. doi:10.1145/3055399.3055441.
  23. MIP*=RE, 2020, arXiv:arXiv:2001.04383.
  24. Quantum soundness of the classical low individual degree test. ArXiv, abs/2009.12982, 2020.
  25. A quantum linearity test for robustly verifying entanglement. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, page 1003–1015, New York, NY, USA, 2017. Association for Computing Machinery. doi:10.1145/3055399.3055468.
  26. Low-degree testing for quantum states, and a quantum entangled games PCP for QMA. In Mikkel Thorup, editor, 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 731–742. IEEE Computer Society, 2018. doi:10.1109/FOCS.2018.00075.
  27. Retracted: Two-player entangled games are np-hard. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPICS.CCC.2018.20.
  28. NEEXP is Contained in MIP*, page 510–518. IEEE, Nov 2019. Funding by NSF.
  29. Quantum free games. In Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023, page 1603–1616, New York, NY, USA, 2023. Association for Computing Machinery. doi:10.1145/3564246.3585208.
  30. Joel A. Tropp. User-friendly tail bounds for sums of random matrices. Found. Comput. Math., 12(4):389–434, August 2012.
  31. Thomas Vidick. CS286.2 lecture 1: The PCP theorem, hardness of approximation, and multiplayer games. http://users.cms.caltech.edu/ vidick/teaching/286_qPCP/lecture1.pdf, 2014.
  32. Thomas Vidick. Three-player entangled xor games are np-hard to approximate. SIAM Journal on Computing, 45(3):1007–1063, 2016, arXiv:https://doi.org/10.1137/140956622. doi:10.1137/140956622.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com