Finite-Length Analyses for Source and Channel Coding on Markov Chains (1309.7528v5)
Abstract: We study finite-length bounds for source coding with side information for Markov sources and channel coding for channels with conditional Markovian additive noise. For this purpose, we propose two criteria for finite-length bounds. One is the asymptotic optimality and the other is the efficient computability of the bound. Then, we derive finite-length upper and lower bounds for coding length in both settings so that their computational complexity is efficient. To discuss the first criterion, we derive the large deviation bounds, the moderate deviation bounds, and second order bounds for these two topics, and show that these finite-length bounds achieves the asymptotic optimality in these senses. For this discussion, we introduce several kinds of information measure for transition matrices.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.