Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 15 tok/s
GPT-5 High 20 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 460 tok/s Pro
Kimi K2 217 tok/s Pro
2000 character limit reached

Local Pareto optimality conditions for vector quadratic fractional optimization problems (1309.5515v2)

Published 21 Sep 2013 in math.OC

Abstract: There are several concepts and definitions that characterize and give optimality conditions for solutions of a vector optimization problem. One of the most important is the first-order necessary optimality condition that generalizes the Karush-Kuhn-Tucker condition. This condition ensures the existence of an arbitrary neighborhood that contains an local optimal solution. The present work we introduce an alternative concept to identify the local optimal solution neighborhood in vector optimization problems. The main aspect of this contribution is the development of necessary and sufficient Pareto optimality conditions for the solutions of a particular vector optimization problem, where each objective function consists of a ratio quadratic functions and the feasible set is defined by linear inequalities. We show how to calculate the largest radius of the spherical region centered on a local Pareto solution in which this solution is optimal. In this process we may conclude that the solution is also globally optimal. These conditions might be useful to determine termination criteria in the development of algorithms, including more general problems in which quadratic approximations are used locally.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube