Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s
GPT-5 High 14 tok/s Pro
GPT-4o 99 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 192 tok/s Pro
2000 character limit reached

Pareto optimality conditions and duality for vector quadratic fractional optimization problems (1309.5508v3)

Published 21 Sep 2013 in math.OC

Abstract: One of the most important optimality conditions to aid to solve a vector optimization problem is the first-order necessary optimality condition that generalizes the Karush-Kuhn-Tucker condition. However, to obtain the sufficient optimality conditions, it is necessary to impose additional assumptions on the objective functions and in the constraint set. The present work is concerned with the constrained vector quadratic fractional optimization problem. It shows that sufficient Pareto optimality conditions and the main duality theorems can be established without the assumption of generalized convexity in the objective functions, by considering some assumptions on a linear combination of Hessian matrices instead. The main aspect of this contribution is the development of Pareto optimality conditions based on a similar second-order sufficient condition for problems with convex constraints, without convexity assumptions on the objective functions. These conditions might be useful to determine termination criteria in the development of algorithms.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.