Lagrange Multiplier Local Necessary and Global Sufficiency Criteria for Some Non-Convex Programming Problems (1804.02270v1)
Abstract: In this paper we consider three minimization problems, namely quadratic, $\rho$-convex and quadratic fractional programing problems. The quadratic problem is considered with quadratic inequality constraints with bounded continuous and discrete mixed variables. The $\rho$-convex problem is considered with $\rho$-convex inequality constraints in mixed variables. The quadratic fractional problem is studied with quadratic fractional constraints in mixed variables. For all three problems we reformulate the problem as a mathematical programming problem and apply standard Karush Kuhn Tucker necessary conditions. Then, for each problem, we provide local necessary optimality condition. Further, for each problem a Lagrangian multiplier sufficient optimality condition is provided to identify global minimizer among the local minimizers. For the quadratic problem underestimation of a Lagrangian was employed to obtain the desired sufficient conditions. For the $\rho$-convex problem we obtain two sufficient optimality conditions to distinguish a global minimizer among the local minimizers, one with an underestimation of a Lagrangian and the other with a different technique. A global sufficient optimality condition for the quadratic fractional problem is obtained by reformulating the problem as a quadratic problem and then utilizing the results of the quadratic problem. Examples are provided to illustrate the significance of the results obtained.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.