Non-commutative rational Yang-Baxter maps (1308.2824v2)
Abstract: Starting from multidimensional consistency of non-commutative lattice modified Gel'fand-Dikii systems we present the corresponding solutions of the functional (set-theoretic) Yang-Baxter equation, which are non-commutative versions of the maps arising from geometric crystals. Our approach works under additional condition of centrality of certain products of non-commuting variables. Then we apply such a restriction on the level of the Gel'fand-Dikii systems what allows to obtain non-autonomous (but with central non-autonomous factors) versions of the equations. In particular we recover known non-commutative version of Hirota's lattice sine-Gordon equation, and we present an integrable non-commutative and non-autonomous lattice modified Boussinesq equation.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.