Entwining Yang-Baxter maps over Grassmann algebras (2311.18673v1)
Abstract: We construct novel solutions to the set-theoretical entwining Yang-Baxter equation. These solutions are birational maps involving non-commutative dynamical variables which are elements of the Grassmann algebra of order $n$. The maps arise from refactorisation problems of Lax supermatrices associated to a nonlinear Schr\"odinger equation. In this non-commutative setting, we construct a spectral curve associated to each of the obtained maps using the characteristic function of its monodromy supermatrix. We find generating functions of invariants (first integrals) for the entwining Yang-Baxter maps from the moduli of the spectral curves. Moreover, we show that a hierarchy of birational entwining Yang-Baxter maps with commutative variables can be obtained by fixing the order $n$ of the Grassmann algebra. We present the members of the hierarchy in the case $n=1$ (dual numbers) and $n=2$, and discuss their dynamical and integrability properties, such as Lax matrices, invariants, and measure preservation.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.