Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Non-Abelian hierarchies of compatible maps, associated integrable difference systems and Yang-Baxter maps (2202.03412v2)

Published 7 Feb 2022 in nlin.SI

Abstract: We present two non-equivalent families of hierarchies of non-Abelian compatible maps and we provide their Lax pair formulation. These maps are associated with families of hierarchies of non-Abelian Yang-Baxter maps, which we provide explicitly. In addition, these hierarchies correspond to integrable difference systems with variables defined on edges of an elementary cell of the $\mathbb{Z}2$ graph, that in turn lead to hierarchies of difference systems with variables defined on vertices of the same cell. In that respect we obtain the non-Abelian lattice-modified Gel'fand-Dikii hierarchy, together with the explicit form of a non-Abelian hierarchy that we refer to as the lattice-NQC (or lattice-$(Q3)_0$) Gel'fand-Dikii hierarchy.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (74)
  1. On some integrable discrete–time systems associated with the Bogoyavlensky lattices. Physica A, 228:172–188, 1996.
  2. Classical limit for a 3D lattice spin model. Phys. Lett. A., 232:211–216, 1997.
  3. A. Tongas and F. Nijhoff. The Boussinesq integrable system: compatible lattice and continuum structures. Glasgow Math. J., 47A:205–219, 2004.
  4. K. Maruno and K. Kajiwara. The discrete potential Boussinesq equation and its multisoliton solutions. Appl. Anal., 89:593–609, 2010.
  5. J. Hietarinta. Boussinesq-like multi-component lattice equations and multi-dimensional consistency. J. Phys. A: Math. Theor., 44:165204, 2011.
  6. J. Atkinson. Integrable lattice equations: connection to the Möbius group, Bäcklund transformations and solutions. PhD thesis, University of Leeds, 2008. http://etheses.whiterose.ac.uk/9081/.
  7. M. Hay. Lattice modified KdV hierarchy from a Lax pair expansion. J. Phys. A, 46:015203, 2013.
  8. On the integrability of a new lattice equation found by multiple scale analysis. J. Phys. A: Math. Theor., 47:265204, 2014.
  9. Darboux transformation for the vector sine-Gordon equation and integrable equations on a sphere. Lett. Math. Phys., 106:973–996, 2016.
  10. Constructing initial value spaces of lattice equations. arXiv:1807.06162[nlin], 2018.
  11. A.P. Kels. Extended Z-invariance for integrable vector and face models and multi-component integrable quad equations. J. Stat. Phys., 176:1375–1408, 2019.
  12. A.P. Kels. Two-component Yang-Baxter maps associated to integrable quad equations. arXiv:1910.03562v5 [math-ph], 2019.
  13. Integrable two-component difference systems of equations. Proc. R. Soc. A., 476:20190668, 2020.
  14. Multi-component extension of CAC systems. SIGMA, 16(060):30pages, 2020.
  15. J. Hietarinta and D.-J. Zhang. Discrete Boussinesq–type equations. In N. Euler and D.-J. Zhang, editors, Nonlinear Systems and Their Remarkable Mathematical Structures: Volume 3, Contributions from China (1st ed.). Chapman and Hall/CRC. 2021. arXiv:2012.00495[nlin.SI]
  16. Discrete Systems and Integrablity. Cambridge Texts in Applied Mathematics (No. 54). Cambridge University Press, 2016.
  17. The direct linearization approach to hierarchies of integrable PDEs in 2+1212+12 + 1 dimensions: I. Lattice equations and the differential-difference hierarchies. Inverse Problems, 6:567–590, 1990.
  18. B. Kupershmidt. KP or mKP: Noncommutative Mathematics of Lagrangian, Hamiltonian, and Integrable Systems. AMS, Providence, 2000.
  19. A Dimakis and F. Müller-Hoissen. On generalized Lotka-Volterra lattices. Czech. J. Phys., 52:1187–1193, 2002.
  20. Integrable noncommutative equations on quad-graphs. the consistency approach. Lett. Math. Phys., 61(3):241–254, 2002.
  21. Exact solutions of quantum mappings from the lattice KdV as multi-dimensional operator difference equations. J. Phys. A: Math. Gen., 38(43):9503–9527, 2005.
  22. J.J.C Nimmo. On a non-Abelian Hirota-Miwa equation. J. Phys. A: Math. Gen., 39:5053–5065, 2006.
  23. A. Doliwa. Non-commutative lattice-modified Gel’fand-Dikii systems. J. Phys. A: Math. Theor., 46(20):205202, 2013.
  24. A. Doliwa. Non-commutative rational Yang-Baxter maps. Lett. Math. Phys., 104:299–309, 2014.
  25. A. Doliwa and M. Noumi. The Coxeter relations and KP map for non-commuting symbols. Lett. Math. Phys., 110:2743–2762, 2020.
  26. P. Kassotakis. Discrete Lax pairs and hierarchies of integrable difference systems. arXiv:nlin/2104.14529, 2021.
  27. A. Dimakis and I. G. Korepanov. Grassmannian-parameterized solutions to direct-sum polygon and simplex equations. J. Math. Phys., 62(5):051701, 2021.
  28. A. Doliwa. Non-commutative q-Painlevé VI equation. J. Phys. A: Math. Theor., 47(3):035203, 2013.
  29. Grassmann extensions of Yang–Baxter maps. J. Phys. A: Math. Theor., 49(14):145202, 2016.
  30. S. Konstantinou-Rizos and T.E. Kouloukas. A noncommutative discrete potential KdV lift. J. Math. Phys., 59:063506, 2018.
  31. Tetrahedron maps and symmetries of three dimensional integrable discrete equations. J. Math. Phys., 60:123503, 2019.
  32. Integrable extensions of the Adler map via Grassmann algebras. Theor. Math. Phys., 207(2):553–559, 2021.
  33. P. Kassotakis and T. Kouloukas. On non-abelian quadrirational Yang-Baxter maps. J. Phys. A: Math. Theor., 55(17):175203, 2022.
  34. A. Doliwa and A. Siemaszko. Integrability and geometry of the Wynn recurrence. Numer. Algorithms, 92, 571-596, 2023. arXiv:2201.01749 [nlin.SI],
  35. A. Doliwa. Non-commutative Hermite–Pade approximation and integrability. Lett. Math. Phys., 112, 68, 2022.
  36. Yang-Baxter maps and symmetries of integrable equations on quad-graphs. J. Math. Phys., 47:Art. no. 083502, 2006.
  37. B. K. Harrison. Bäcklund transformation for the Ernst equation of general relativity. Phys. Rev. Lett., 41:1197–1200, 1978.
  38. On quadrirational Yang-Baxter maps. SIGMA, 6:9pp, 2010.
  39. The lattice Gel’fand-Dikii hierarchy. Inverse Problems, 8(4):597–621, aug 1992.
  40. F.W. Nijhoff. On some “Schwarzian equations” and their discrete analogues. In A.S. Fokas and I.M. Gel’fand, editors, Algebraic Aspects of Integrable Systems: In memory of Irene Dorfman, pages 237–260. Birkhäuser Verlag, 1996.
  41. F. Nijhoff. A higher-rank version of the Q3 equation. arXiv:1104.1166 [nlin.SI]], 2011.
  42. An integrable multicomponent quad–equation and its Lagrangian formulation. Theor. Math. Phys., 173:1644–1653, 2012.
  43. Direct linearization of extended lattice BSQ systems. Stud. Appl. Math., 129(2):220–248, 2012.
  44. A.P. Fordy and P. Xenitidis. ℤNsuperscriptℤ𝑁\mathbb{Z}^{N}blackboard_Z start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT graded discrete Lax pairs and integrable difference equations. J. Phys. A: Math. Theor., 50(16):165205, 2017.
  45. q-painlevé systems arising from q-KP hierarchy. Lett. Math. Phys., 62:259–268, 2002.
  46. Direct linearization of nonlinear difference-difference equations. Phys. Lett. A, 97:125–128, 1983.
  47. Linear integral equations and nonlinear difference-difference equations. Physica A, 125:344–380, 1984.
  48. Classification of integrable equations on quad-graphs. The consistency approach. Comm. Math. Phys., 233(3):513–543, 2003.
  49. Geometry of Yang–Baxter maps: pencils of conics and quadrirational mappings. Comm. Anal. Geom., 12(5):967–1007, 2004.
  50. P. Etingof. Geometric crystals and set-theoretical solutions to the quantum Yang-Baxter equation. Commun. Algebra, 31(4):1961–1973, 2003.
  51. E.K. Sklyanin. Classical limits of SU(2)2(2)( 2 )–invariant solutions of the Yang–Baxter equation. J. Soviet Math., 40:93–107, 1988.
  52. V.G. Drinfeld. On some unsolved problems in quantum group theory, quantum groups. Lecture Notes in Math., 1510:1–8, 1992.
  53. V.M. Bukhshtaber. Yang-Baxter mappings. Uspekhi Mat. Nauk, 53:241–242, 1998.
  54. A.P. Veselov. Yang-Baxter maps and integrable dynamics. Phys. Lett. A, 314:214–221, 2003.
  55. Lax matrices for Yang-Baxter maps. J. Nonlin. Math. Phys, 10(2):223–230, 2003.
  56. F.W. Nijhoff. Lax pair for the Adler (lattice Krichever-Novikov) system. Phys. Lett. A, 297:49–58, 2002.
  57. A.P. Fordy and J. Gibbons. Integrable nonlinear Klein-Gordon equations and Toda lattices. Commun. Math. Phys., 77:21–30, 1980.
  58. O. I. Bogoyavlenskiĭ. Some constructions of integrable dynamical systems. Izv. Akad. Nauk SSSR Ser. Mat., 51(4):737–766, 910, 1987.
  59. Morphisms and automorphisms of skew–symmetric lotka–volterra systems. J. Phys. A: Math. Theor., 55(32):325201, 2022.
  60. A. Doliwa and P.M. Santini. The symmetric, D-invariant and Egorov reductions of the quadrilateral lattice. Journal of Geometry and Physics, 36(1):60–102, 2000.
  61. P. Kassotakis and M. Nieszporski. Families of integrable equations. SIGMA, 7(100):14pp, 2011.
  62. P. Kassotakis and M. Nieszporski. On non-multiaffine consistent-around-the-cube lattice equations. Phys. Lett. A, 376(45):3135–3140, 2012. arXiv:1106.0435.
  63. P. Kassotakis and M. Nieszporski. Difference systems in bond and face variables and non-potential versions of discrete integrable systems. J. Phys. A: Math. Theor., 51(38):385203, 2018.
  64. M. Nieszporski and P. Kassotakis. Systems of difference equations on a vector valued function that admits 3d vector space of scalar potentials. arXiv:1908.01706[nlin], 2019.
  65. Symmetries and integrability of discrete equations defined on a black-white lattice. J. Phys. A: Math. Theor., 42:454025, 2009.
  66. Discrete nonlinear hyperbolic equations. Classification of integrable cases. Funct. Anal. Appl., 43(1):3–17, 2009.
  67. R. Boll. Classification of 3D consistent quad-equations. J. Nonlinear Math. Phys., 18(3):337–365, 2011.
  68. L. Bianchi. Lezioni di geometrica differenziale. Enrico Spoerri, 1894.
  69. R. Hirota. Nonlinear partial difference equations III; discrete sine-Gordon equation. J. Phys. Soc. Jpn., 43:2079–2086, 1977.
  70. Entwining Yang-Baxter maps and integrable lattices. Banach Center Publ., 93:163–175, 2011.
  71. P Kassotakis. Invariants in separated variables: Yang-Baxter, entwining and transfer maps. SIGMA, 15(048):36pp, 2019.
  72. Yang-Baxter maps from the discrete BKP equation. SIGMA, 6(028):11pp, 2010.
  73. V.E. Adler. Recutting of polygons. Funct. Anal. Appl., 27(2):79–80, 1993.
  74. Cauchy problem for integrable discrete equations on quad–graphs. Acta Appl. Math., 84:237–262, 2004.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.