Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Normality of spaces of operators and quasi-lattices (1307.1415v2)

Published 4 Jul 2013 in math.FA

Abstract: We give an overview of normality and conormality properties of pre-ordered Banach spaces. For pre-ordered Banach spaces $X$ and $Y$ with closed cones we investigate normality of $B(X,Y)$ in terms of normality and conormality of the underlying spaces $X$ and $Y$. Furthermore, we define a class of ordered Banach spaces called quasi-lattices which strictly contains the Banach lattices, and we prove that every strictly convex reflexive ordered Banach space with a closed proper generating cone is a quasi-lattice. These spaces provide a large class of examples $X$ and $Y$ that are not Banach lattices, but for which $B(X,Y)$ is normal. In particular, we show that a Hilbert space $\mathcal{H}$ endowed with a Lorentz cone is a quasi-lattice (that is not a Banach lattice if $\dim\mathcal{H}\geq3$), and satisfies an identity analogous to the elementary Banach lattice identity $||x||=|x|$ which holds for all elements $x$ of a Banach lattice. This is used to show that spaces of operators between such ordered Hilbert spaces are always absolutely monotone and that the operator norm is positively attained, as is also always the case for spaces of operators between Banach lattices.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube