Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Increasing sequences in ordered Banach spaces -- new theorems and open problems (2409.19768v1)

Published 29 Sep 2024 in math.FA

Abstract: An ordered Banach space $X$ is said to have the Levi property or to be regular if every increasing order bounded net (equivalently, sequence) is norm convergent. We prove four theorems related to this classical concept: (i) The Levi property follows from the - formally weaker - assumption that every increasing net that has a minimal upper bound is norm convergent. This motivates a discussion about in which sense the Levi property resembles the notion of order continuous norm from Banach lattice theory. (ii) If $X$ is separable and has normal cone, then the assumption that every increasing order bounded sequence has a supremum implies the Levi property. This generalizes a classical result about Banach lattices, but requires new ideas since one cannot work with disjoint sequences in the proof. (iii) A version of Dini's theorem for ordered Banach spaces that is more general than what is typically stated in the literature. We use this to derive a sufficient condition for the space of all compact operators between two Banach lattices to have the Levi property. (iv) Dini's theorem never holds on reflexive ordered Banach spaces with non-normal cone - i.e., on such a space one can always find an increasing sequence that converges weakly but not in norm. We illustrate our results by various examples and counterexamples and pose four open problems.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.