Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 209 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Coincidence and Common Fixed Point Results for Generalized $α$-$ψ$ Contractive Type Mappings with Applications (1306.3498v1)

Published 14 Jun 2013 in math.FA

Abstract: A new, simple and unified approach in the theory of contractive mappings was recently given by Samet \emph{et al.} (Nonlinear Anal. 75, 2012, 2154-2165) by using the concepts of $\alpha$-$\psi$-contractive type mappings and $\alpha$-admissible mappings in metric spaces. The purpose of this paper is to present a new class of contractive pair of mappings called generalized $\alpha$-$\psi$ contractive pair of mappings and study various fixed point theorems for such mappings in complete metric spaces. For this, we introduce a new notion of $\alpha$-admissible w.r.t $g$ mapping which in turn generalizes the concept of $g$-monotone mapping recently introduced by $\acute{C}$iri$\acute{c}$ et al. (Fixed Point Theory Appl. 2008(2008), Article ID 131294, 11 pages). As an application of our main results, we further establish common fixed point theorems for metric spaces endowed with a partial order as well as in respect of cyclic contractive mappings. The presented theorems extend and subsumes various known comparable results from the current literature. Some illustrative examples are provided to demonstrate the main results and to show the genuineness of our results.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.