Expectation-maximization for logistic regression (1306.0040v1)
Abstract: We present a family of expectation-maximization (EM) algorithms for binary and negative-binomial logistic regression, drawing a sharp connection with the variational-Bayes algorithm of Jaakkola and Jordan (2000). Indeed, our results allow a version of this variational-Bayes approach to be re-interpreted as a true EM algorithm. We study several interesting features of the algorithm, and of this previously unrecognized connection with variational Bayes. We also generalize the approach to sparsity-promoting priors, and to an online method whose convergence properties are easily established. This latter method compares favorably with stochastic-gradient descent in situations with marked collinearity.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.