Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A MAP approach for $\ell_q$-norm regularized sparse parameter estimation using the EM algorithm (1508.01071v1)

Published 5 Aug 2015 in cs.SY and stat.ML

Abstract: In this paper, Bayesian parameter estimation through the consideration of the Maximum A Posteriori (MAP) criterion is revisited under the prism of the Expectation-Maximization (EM) algorithm. By incorporating a sparsity-promoting penalty term in the cost function of the estimation problem through the use of an appropriate prior distribution, we show how the EM algorithm can be used to efficiently solve the corresponding optimization problem. To this end, we rely on variance-mean Gaussian mixtures (VMGM) to describe the prior distribution, while we incorporate many nice features of these mixtures to our estimation problem. The corresponding MAP estimation problem is completely expressed in terms of the EM algorithm, which allows for handling nonlinearities and hidden variables that cannot be easily handled with traditional methods. For comparison purposes, we also develop a Coordinate Descent algorithm for the $\ell_q$-norm penalized problem and present the performance results via simulations.

Citations (4)

Summary

We haven't generated a summary for this paper yet.