The geometry of the curve graph of a right-angled Artin group
Abstract: We develop an analogy between right-angled Artin groups and mapping class groups through the geometry of their actions on the extension graph and the curve graph respectively. The central result in this paper is the fact that each right-angled Artin group acts acylindrically on its extension graph. From this result we are able to develop a Nielsen--Thurston classification for elements in the right-angled Artin group. Our analogy spans both the algebra regarding subgroups of right-angled Artin groups and mapping class groups, as well as the geometry of the extension graph and the curve graph. On the geometric side, we establish an analogue of Masur and Minsky's Bounded Geodesic Image Theorem and their distance formula.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.