Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Acylindricity of the action of right-angled Artin groups on extension graphs (2212.02708v1)

Published 6 Dec 2022 in math.GT

Abstract: The action of a right-angled Artin group on its extension graph is known to be acylindrical because the cardinality of the so-called $r$-quasi-stabilizer of a pair of distant points is bounded above by a function of $r$. The known upper bound of the cardinality is an exponential function of $r$. In this paper we show that the $r$-quasi-stabilizer is a subset of a cyclic group and its cardinality is bounded above by a linear function of $r$. This is done by exploring lattice theoretic properties of group elements, studying prefixes of powers and extending the uniqueness of quasi-roots from word length to star length. We also improve the known lower bound for the minimal asymptotic translation length of a right angled Artin group on its extension graph.

Summary

We haven't generated a summary for this paper yet.