Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Logical difficulty from combining counterfactuals in the GHZ-Bell theorems (1305.2948v2)

Published 13 May 2013 in quant-ph

Abstract: In eliminating the fair sampling assumption, the Greenberger, Horne, Zeilinger (GHZ) theorem is believed to confirm Bell's historic conclusion that local hidden variables are inconsistent with the results of quantum mechanics. The GHZ theorem depends on predicting the results of sets of measurements of which only one may be performed. In the present paper, the non-commutative aspects of these unperformed measurements are critically examined. Classical examples and the logic of the GHZ construction are analyzed to demonstrate that combined counterfactual results of non-commuting operations are in general logically inconsistent with performed measurement sequences whose results depend on non-commutation. The Bell theorem is also revisited in the light of this result. It is concluded that negative conclusions regarding local hidden variables do not follow from the GHZ and Bell theorems as historically reasoned.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.