Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Question Answering Against Very-Large Text Collections (1304.7157v1)

Published 26 Apr 2013 in cs.CL and cs.IR

Abstract: Question answering involves developing methods to extract useful information from large collections of documents. This is done with specialised search engines such as Answer Finder. The aim of Answer Finder is to provide an answer to a question rather than a page listing related documents that may contain the correct answer. So, a question such as "How tall is the Eiffel Tower" would simply return "325m" or "1,063ft". Our task was to build on the current version of Answer Finder by improving information retrieval, and also improving the pre-processing involved in question series analysis.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube