Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Data Driven Approach to Query Expansion in Question Answering (1203.5084v1)

Published 22 Mar 2012 in cs.CL and cs.IR

Abstract: Automated answering of natural language questions is an interesting and useful problem to solve. Question answering (QA) systems often perform information retrieval at an initial stage. Information retrieval (IR) performance, provided by engines such as Lucene, places a bound on overall system performance. For example, no answer bearing documents are retrieved at low ranks for almost 40% of questions. In this paper, answer texts from previous QA evaluations held as part of the Text REtrieval Conferences (TREC) are paired with queries and analysed in an attempt to identify performance-enhancing words. These words are then used to evaluate the performance of a query expansion method. Data driven extension words were found to help in over 70% of difficult questions. These words can be used to improve and evaluate query expansion methods. Simple blind relevance feedback (RF) was correctly predicted as unlikely to help overall performance, and an possible explanation is provided for its low value in IR for QA.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Leon Derczynski (48 papers)
  2. Jun Wang (990 papers)
  3. Robert Gaizauskas (9 papers)
  4. Mark A. Greenwood (5 papers)
Citations (17)