Papers
Topics
Authors
Recent
2000 character limit reached

A Two-Phase Maximum-Likelihood Sequence Estimation for Receivers with Partial CSI (1304.6245v1)

Published 23 Apr 2013 in cs.IT and math.IT

Abstract: The optimality of the conventional maximum likelihood sequence estimation (MLSE), also known as the Viterbi Algorithm (VA), relies on the assumption that the receiver has perfect knowledge of the channel coefficients or channel state information (CSI). However, in practical situations that fail the assumption, the MLSE method becomes suboptimal and then exhaustive checking is the only way to obtain the ML sequence. At this background, considering directly the ML criterion for partial CSI, we propose a two-phase low-complexity MLSE algorithm, in which the first phase performs the conventional MLSE algorithm in order to retain necessary information for the backward VA performed in the second phase. Simulations show that when the training sequence is moderately long in comparison with the entire data block such as 1/3 of the block, the proposed two-phase MLSE can approach the performance of the optimal exhaustive checking. In a normal case, where the training sequence consumes only 0.14 of the bandwidth, our proposed method still outperforms evidently the conventional MLSE.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.