Approximate ML Decision Feedback Block Equalizer for Doubly Selective Fading Channels (1112.0725v1)
Abstract: In order to effetively suppress intersymbol interference (ISI) at low complexity, we propose in this paper an approximate maximum likelihood (ML) decision feedback block equalizer (A-ML-DFBE) for doubly selective (frequency-selective, time-selective) fading channels. The proposed equalizer design makes efficient use of the special time-domain representation of the multipath channels through a matched filter, a sliding window, a Gaussian approximation, and a decision feedback. The A-ML-DFBE has the following features: 1) It achieves performance close to maximum likelihood sequence estimation (MLSE), and significantly outperforms the minimum mean square error (MMSE) based detectors; 2) It has substantially lower complexity than the conventional equalizers; 3) It easily realizes the complexity and performance tradeoff by adjusting the length of the sliding window; 4) It has a simple and fixed-length feedback filter. The symbol error rate (SER) is derived to characterize the behaviour of the A-ML-DFBE, and it can also be used to find the key parameters of the proposed equalizer. In addition, we further prove that the A-ML-DFBE obtains full multipath diversity.