Papers
Topics
Authors
Recent
Search
2000 character limit reached

Machine Generalization and Human Categorization: An Information-Theoretic View

Published 27 Mar 2013 in cs.AI | (1304.3441v1)

Abstract: In designing an intelligent system that must be able to explain its reasoning to a human user, or to provide generalizations that the human user finds reasonable, it may be useful to take into consideration psychological data on what types of concepts and categories people naturally use. The psychological literature on concept learning and categorization provides strong evidence that certain categories are more easily learned, recalled, and recognized than others. We show here how a measure of the informational value of a category predicts the results of several important categorization experiments better than standard alternative explanations. This suggests that information-based approaches to machine generalization may prove particularly useful and natural for human users of the systems.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.