Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Arithmetic Properties of Picard-Fuchs Equations and Holonomic Recurrences (1304.0203v1)

Published 31 Mar 2013 in math.NT

Abstract: The coefficient series of the holomorphic Picard-Fuchs differential equation associated with the periods of elliptic curves often have surprising number-theoretic properties. These have been widely studied in the case of the torsion-free, genus zero congruence subgroups of index 6 and 12 (e.g. the Beauville families). Here, we consider arithmetic properties of the Picard-Fuchs solutions associated to general elliptic families, with a particular focus on the index 24 congruence subgroups. We prove that elliptic families with rational parameters admit linear reparametrizations such that their associated Picard-Fuchs solutions lie in Z[[t]]. A sufficient condition is given such that the same holds for holomorphic solutions at infinity. An Atkin-Swinnerton-Dyer congruence is proven for the coefficient series attached to \Gamma_1(7). We conclude with a consideration of asymptotics, wherein it is proved that many coefficient series satisfy asymptotic expressions of the form u_n \sim \ell \lambdan/n. Certain arithmetic results extend to the study of general holonomic recurrences.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.