2000 character limit reached
Newton polytopes and algebraic hypergeometric series (1806.10243v1)
Published 26 Jun 2018 in math.AG and math.NT
Abstract: Let $X$ be the family of hypersurfaces in the odd-dimensional torus ${\mathbb T}{2n+1}$ defined by a Laurent polynomial $f$ with fixed exponents and variable coefficients. We show that if $n\Delta$, the dilation of the Newton polytope $\Delta$ of $f$ by the factor $n$, contains no interior lattice points, then the Picard-Fuchs equation of $W_{2n}H{2n}_{\rm DR}(X)$ has a full set of algebraic solutions (where $W_\bullet$ denotes the weight filtration on de Rham cohomology). We also describe a procedure for finding solutions of these Picard-Fuchs equations.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.