Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Newton polytopes and algebraic hypergeometric series (1806.10243v1)

Published 26 Jun 2018 in math.AG and math.NT

Abstract: Let $X$ be the family of hypersurfaces in the odd-dimensional torus ${\mathbb T}{2n+1}$ defined by a Laurent polynomial $f$ with fixed exponents and variable coefficients. We show that if $n\Delta$, the dilation of the Newton polytope $\Delta$ of $f$ by the factor $n$, contains no interior lattice points, then the Picard-Fuchs equation of $W_{2n}H{2n}_{\rm DR}(X)$ has a full set of algebraic solutions (where $W_\bullet$ denotes the weight filtration on de Rham cohomology). We also describe a procedure for finding solutions of these Picard-Fuchs equations.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.