Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 86 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Kimi K2 160 tok/s Pro
2000 character limit reached

Can the canonical quantization be accomplished within the intrinsic geometry? (1303.0909v2)

Published 5 Mar 2013 in quant-ph, math-ph, math.DG, and math.MP

Abstract: For particles constrained on a curved surface, how to perform quantization within Dirac's canonical quantization scheme is a long-standing problem. On one hand, Dirac stressed that the Cartesian coordinate system has fundamental importance in passing from the classical Hamiltonian to its quantum mechanical form while preserving the classical algebraic structure between positions, momenta and Hamiltonian to the extent possible. On the other, on the curved surface, we have no exact Cartesian coordinate system within intrinsic geometry. These two facts imply that the three-dimensional Euclidean space in which the curved surface is embedded must be invoked otherwise no proper canonical quantization is attainable. Since the minimum surfaces, catenoid and helicoid studied in this paper, have vanishing mean curvature, we explore whether the intrinsic geometry offers a proper framework in which the quantum theory can be established in a self-consistent way. Results show that it does for quantum motions on catenoid and it does not for that on helicoid, but neither is compatible with Schr\"odinger theory. In contrast, in three-dimensional Euclidean space, the geometric momentum and potential are then in agreement with those given by the Schr\"odinger theory.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)