Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Probabilistic Calculus of Actions (1302.6835v1)

Published 27 Feb 2013 in cs.AI

Abstract: We present a symbolic machinery that admits both probabilistic and causal information about a given domain and produces probabilistic statements about the effect of actions and the impact of observations. The calculus admits two types of conditioning operators: ordinary Bayes conditioning, P(y|X = x), which represents the observation X = x, and causal conditioning, P(y|do(X = x)), read the probability of Y = y conditioned on holding X constant (at x) by deliberate action. Given a mixture of such observational and causal sentences, together with the topology of the causal graph, the calculus derives new conditional probabilities of both types, thus enabling one to quantify the effects of actions (and policies) from partially specified knowledge bases, such as Bayesian networks in which some conditional probabilities may not be available.

Citations (122)

Summary

We haven't generated a summary for this paper yet.