Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Refine Predictions Ad Infinitum? (1302.6700v1)

Published 27 Feb 2013 in cs.GT

Abstract: We study how standard auction objectives in sponsored search markets change with refinements in the prediction of the relevance (click-through rates) of ads. We study mechanisms that optimize for a convex combination of efficiency and revenue. We show that the objective function of such a mechanism can only improve with refined (improved) relevance predictions, i.e., the search engine has no disincentive to perform these refinements. More interestingly, we show that under assumptions, refinements to relevance predictions can only improve the efficiency of any such mechanism. Our main technical contribution is to study how relevance refinements affect the similarity between ranking by virtual-value (revenue ranking) and ranking by value (efficiency ranking). Finally, we discuss implications of our results to the literature on signaling.

Citations (2)

Summary

We haven't generated a summary for this paper yet.