Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

From dynamical systems to renormalization (1302.6037v1)

Published 25 Feb 2013 in math.DS, math.CO, and quant-ph

Abstract: We study in this paper logarithmic derivatives associated to derivations on graded complete Lie algebra, as well as the existence of inverses. These logarithmic derivatives, when invertible, generalize the exp-log correspondence between a Lie algebra and its Lie group. Such correspondences occur naturally in the study of dynamical systems when dealing with the linearization of vector fields and the non-linearizability of a resonant vector fields corresponds to the non-invertibility of a logarithmic derivative and to the existence of normal forms. These concepts, stemming from the theory of dynamical systems, can be rephrased in the abstract setting of Lie algebra and the same difficulties as in perturbative quantum field theory (pQFT) arise here. Surprisingly, one can adopt the same ideas as in pQFT with fruitful results such as new constructions of normal forms with the help of the Birkhoff decomposition. The analogy goes even further (locality of counter terms, choice of a renormalization scheme) and shall lead to more interactions between dynamical systems and quantum field theory.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.