Papers
Topics
Authors
Recent
2000 character limit reached

Feature Multi-Selection among Subjective Features

Published 18 Feb 2013 in cs.LG and stat.ML | (1302.4297v3)

Abstract: When dealing with subjective, noisy, or otherwise nebulous features, the "wisdom of crowds" suggests that one may benefit from multiple judgments of the same feature on the same object. We give theoretically-motivated `feature multi-selection' algorithms that choose, among a large set of candidate features, not only which features to judge but how many times to judge each one. We demonstrate the effectiveness of this approach for linear regression on a crowdsourced learning task of predicting people's height and weight from photos, using features such as 'gender' and 'estimated weight' as well as culturally fraught ones such as 'attractive'.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.