Some Experiments with Real-Time Decision Algorithms
Abstract: Real-time Decision algorithms are a class of incremental resource-bounded [Horvitz, 89] or anytime [Dean, 93] algorithms for evaluating influence diagrams. We present a test domain for real-time decision algorithms, and the results of experiments with several Real-time Decision Algorithms in this domain. The results demonstrate high performance for two algorithms, a decision-evaluation variant of Incremental Probabilisitic Inference [D'Ambrosio 93] and a variant of an algorithm suggested by Goldszmidt, [Goldszmidt, 95], PK-reduced. We discuss the implications of these experimental results and explore the broader applicability of these algorithms.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.