Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Incremental Model-based Learners With Formal Learning-Time Guarantees (1206.6870v1)

Published 27 Jun 2012 in cs.LG, cs.AI, and stat.ML

Abstract: Model-based learning algorithms have been shown to use experience efficiently when learning to solve Markov Decision Processes (MDPs) with finite state and action spaces. However, their high computational cost due to repeatedly solving an internal model inhibits their use in large-scale problems. We propose a method based on real-time dynamic programming (RTDP) to speed up two model-based algorithms, RMAX and MBIE (model-based interval estimation), resulting in computationally much faster algorithms with little loss compared to existing bounds. Specifically, our two new learning algorithms, RTDP-RMAX and RTDP-IE, have considerably smaller computational demands than RMAX and MBIE. We develop a general theoretical framework that allows us to prove that both are efficient learners in a PAC (probably approximately correct) sense. We also present an experimental evaluation of these new algorithms that helps quantify the tradeoff between computational and experience demands.

Citations (60)

Summary

We haven't generated a summary for this paper yet.