Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Fine regularity of Lévy processes and linear (multi)fractional stable motion (1302.3140v2)

Published 13 Feb 2013 in math.PR

Abstract: In this work, we investigate the fine regularity of L\'evy processes using the 2-microlocal formalism. This framework allows us to refine the multifractal spectrum determined by Jaffard and, in addition, study the oscillating singularities of L\'evy processes. The fractal structure of the latter is proved to be more complex than the classic multifractal spectrum and is determined in the case of alpha-stable processes. As a consequence of these fine results and the properties of the 2-microlocal frontier, we are also able to completely characterise the multifractal nature of the linear fractional stable motion (extension of fractional Brownian motion to {\alpha}-stable measures) in the case of continuous and unbounded sample paths as well. The regularity of its multifractional extension is also presented, indirectly providing an example of a stochastic process with a non-homogeneous and random multifractal spectrum.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)