Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Linear and Geometric Mixtures - Analysis (1302.2820v1)

Published 12 Feb 2013 in cs.IT and math.IT

Abstract: Linear and geometric mixtures are two methods to combine arbitrary models in data compression. Geometric mixtures generalize the empirically well-performing PAQ7 mixture. Both mixture schemes rely on weight vectors, which heavily determine their performance. Typically weight vectors are identified via Online Gradient Descent. In this work we show that one can obtain strong code length bounds for such a weight estimation scheme. These bounds hold for arbitrary input sequences. For this purpose we introduce the class of nice mixtures and analyze how Online Gradient Descent with a fixed step size combined with a nice mixture performs. These results translate to linear and geometric mixtures, which are nice, as we show. The results hold for PAQ7 mixtures as well, thus we provide the first theoretical analysis of PAQ7.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.