Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Mixing Strategies in Data Compression (1302.2839v1)

Published 12 Feb 2013 in cs.IT and math.IT

Abstract: We propose geometric weighting as a novel method to combine multiple models in data compression. Our results reveal the rationale behind PAQ-weighting and generalize it to a non-binary alphabet. Based on a similar technique we present a new, generic linear mixture technique. All novel mixture techniques rely on given weight vectors. We consider the problem of finding optimal weights and show that the weight optimization leads to a strictly convex (and thus, good-natured) optimization problem. Finally, an experimental evaluation compares the two presented mixture techniques for a binary alphabet. The results indicate that geometric weighting is superior to linear weighting.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.