Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

The Heston Riemannian distance function (1302.2337v1)

Published 10 Feb 2013 in q-fin.GN

Abstract: The Heston model is a popular stock price model with stochastic volatility that has found numerous applications in practice. In the present paper, we study the Riemannian distance function associated with the Heston model and obtain explicit formulas for this function using geometrical and analytical methods. Geometrical approach is based on the study of the Heston geodesics, while the analytical approach exploits the links between the Heston distance function and the sub-Riemannian distance function in the Grushin plane. For the Grushin plane, we establish an explicit formula for the Legendre-Fenchel transform of the limiting cumulant generating function and prove a partial large deviation principle that is true only inside a special set.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.