Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Structure and Parameter Learning for Causal Independence and Causal Interaction Models (1302.1561v2)

Published 6 Feb 2013 in cs.AI and cs.LG

Abstract: This paper discusses causal independence models and a generalization of these models called causal interaction models. Causal interaction models are models that have independent mechanisms where a mechanism can have several causes. In addition to introducing several particular types of causal interaction models, we show how we can apply the Bayesian approach to learning causal interaction models obtaining approximate posterior distributions for the models and obtain MAP and ML estimates for the parameters. We illustrate the approach with a simulation study of learning model posteriors.

Citations (37)

Summary

We haven't generated a summary for this paper yet.