Orlov's Equivalence and Maximal Cohen-Macaulay Modules over the Cone of an Elliptic Curve (1302.1383v1)
Abstract: We describe a method for doing computations with Orlov's equivalence between the bounded derived category of certain hypersurfaces and the stable category of graded matrix factorisations of the polynomials describing these hypersurfaces. In the case of a smooth elliptic curve over an algebraically closed field we describe the indecomposable graded matrix factorisations of rank one. Since every indecomposable Maximal Cohen-Macaulay module over the completion of a smooth cubic curve is gradable, we obtain explicit descriptions of all indecomposable rank one matrix factorisations of such potentials. Finally, we explain how to compute all indecomposable matrix factorisations of higher rank with the help of a computer algebra system.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.