2000 character limit reached
Memory Capacity of a Random Neural Network (1211.3451v1)
Published 14 Nov 2012 in cs.NE
Abstract: This paper considers the problem of information capacity of a random neural network. The network is represented by matrices that are square and symmetrical. The matrices have a weight which determines the highest and lowest possible value found in the matrix. The examined matrices are randomly generated and analyzed by a computer program. We find the surprising result that the capacity of the network is a maximum for the binary random neural network and it does not change as the number of quantization levels associated with the weights increases.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.