Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Capacity Achieving Linear Codes with Random Binary Sparse Generating Matrices (1102.4099v3)

Published 20 Feb 2011 in cs.IT and math.IT

Abstract: In this paper, we prove the existence of capacity achieving linear codes with random binary sparse generating matrices. The results on the existence of capacity achieving linear codes in the literature are limited to the random binary codes with equal probability generating matrix elements and sparse parity-check matrices. Moreover, the codes with sparse generating matrices reported in the literature are not proved to be capacity achieving. As opposed to the existing results in the literature, which are based on optimal maximum a posteriori decoders, the proposed approach is based on a different decoder and consequently is suboptimal. We also demonstrate an interesting trade-off between the sparsity of the generating matrix and the error exponent (a constant which determines how exponentially fast the probability of error decays as block length tends to infinity). An interesting observation is that for small block sizes, less sparse generating matrices have better performances while for large blok sizes, the performance of the random generating matrices become independent of the sparsity. Moreover, we prove the existence of capacity achieving linear codes with a given (arbitrarily low) density of ones on rows of the generating matrix. In addition to proving the existence of capacity achieving sparse codes, an important conclusion of our paper is that for a sufficiently large code length, no search is necessary in practice to find a deterministic matrix by proving that any arbitrarily selected sequence of sparse generating matrices is capacity achieving with high probability. The focus in this paper is on the binary symmetric and binary erasure channels.her discrete memory-less symmetric channels.

Citations (16)

Summary

We haven't generated a summary for this paper yet.