Papers
Topics
Authors
Recent
Search
2000 character limit reached

Motion Planning for Continuous Time Stochastic Processes: A Dynamic Programming Approach

Published 6 Nov 2012 in math.OC, cs.SY, and math.PR | (1211.1138v3)

Abstract: We study stochastic motion planning problems which involve a controlled process, with possibly discontinuous sample paths, visiting certain subsets of the state-space while avoiding others in a sequential fashion. For this purpose, we first introduce two basic notions of motion planning, and then establish a connection to a class of stochastic optimal control problems concerned with sequential stopping times. A weak dynamic programming principle (DPP) is then proposed, which characterizes the set of initial states that admit a control enabling the process to execute the desired maneuver with probability no less than some pre-specified value. The proposed DPP comprises auxiliary value functions defined in terms of discontinuous payoff functions. A concrete instance of the use of this novel DPP in the case of diffusion processes is also presented. In this case, we establish that the aforementioned set of initial states can be characterized as the level set of a discontinuous viscosity solution to a sequence of partial differential equations, for which the first one has a known boundary condition, while the boundary conditions of the subsequent ones are determined by the solutions to the preceding steps. Finally, the generality and flexibility of the theoretical results are illustrated on an example involving biological switches.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.