Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Variational inequalities and smooth-fit principle for singular stochastic control problems in Hilbert spaces (2406.07242v1)

Published 11 Jun 2024 in math.OC

Abstract: We consider a class of infinite-dimensional singular stochastic control problems. These can be thought of as spatial monotone follower problems and find applications in spatial models of production and climate transition. Let $(D,\mathcal{M},\mu)$ be a finite measure space and consider the Hilbert space $H:=L2(D,\mathcal{M},\mu; \mathbb{R})$. Let then $X$ be an $H$-valued stochastic process on a suitable complete probability space, whose evolution is determined through an SPDE driven by a self-adjoint linear operator $\mathcal{A}$ and affected by a cylindrical Brownian motion. The evolution of $X$ is controlled linearly via an $H$-valued control consisting of the direction and the intensity of action, a real-valued nondecreasing right-continuous stochastic process, adapted to the underlying filtration. The goal is to minimize a discounted convex cost-functional over an infinite time-horizon. By combining properties of semiconcave functions and techniques from viscosity theory, we first show that the value function of the problem $V$ is a $C{1,Lip}(H)$-viscosity solution to the corresponding dynamic programming equation, which here takes the form of a variational inequality with gradient constraint. Then, by allowing the decision maker to choose only the intensity of the control and requiring that the given control direction $\hat{n}$ is an eigenvector of the linear operator $\mathcal{A}$, we establish that the directional derivative $V_{\hat{n}}$ is of class $C1(H)$, hence a second-order smooth-fit principle in the controlled direction holds for $V$. This result is obtained by exploiting a connection to optimal stopping and combining results and techniques from convex analysis and viscosity theory.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com