Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

Gaussian Free Fields and KPZ Relation in R^4 (1210.8051v1)

Published 30 Oct 2012 in math.PR, math-ph, math.FA, and math.MP

Abstract: This work aims to extend part of the two dimensional results of Duplantier and Sheffield on Liouville quantum gravity to four dimensions, and indicate possible extensions to other even-dimensional spaces R2n as well as Riemannian manifolds. Let "\Theta" be the Gaussian free field on R4 with the underlying Hilbert space being the Sobolev space H2 witb the inner product determined by the operator (I-\Delta)2. Assume "\theta" is a generic element from \Theta. We consider a sequence of random Borel measures on R4, each of which is absolutely continuous with respect to the Lebesgue measure dx and the density function is given by the exponential of a centered Gaussian family parametrized by x in R4. We show that with probability 1, this sequence of measures weakly converges to a limit random measure which can be "formally" written as "exp(2\gamma\theta(x)dx". In this setting, we also prove a KPZ relation, which is the quadratic relation between the scaling exponent of a bounded Borel set on R4 under the Lebesgue measure and its counterpart under the random measure obtained above. Our approach is similar to the one used by Duplantier and Sheffield in 2D but with adaptations to R4.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.