Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Renormalization of Critical Gaussian Multiplicative Chaos and KPZ formula (1212.0529v3)

Published 3 Dec 2012 in math.PR, math-ph, and math.MP

Abstract: Gaussian Multiplicative Chaos is a way to produce a measure on $\Rd$ (or subdomain of $\Rd$) of the form $e{\gamma X(x)} dx$, where $X$ is a log-correlated Gaussian field and $\gamma \in [0,\sqrt{2d})$ is a fixed constant. A renormalization procedure is needed to make this precise, since $X$ oscillates between $-\infty$ and $\infty$ and is not a function in the usual sense. This procedure yields the zero measure when $\gamma=\sqrt{2d}$. Two methods have been proposed to produce a non-trivial measure when $\gamma=\sqrt{2d}$. The first involves taking a derivative at $\gamma=\sqrt{2d}$ (and was studied in an earlier paper by the current authors), while the second involves a modified renormalization scheme. We show here that the two constructions are equivalent and use this fact to deduce several quantitative properties of the random measure. In particular, we complete the study of the moments of the derivative multiplicative chaos, which allows us to establish the KPZ formula at criticality. The case of two-dimensional (massless or massive) Gaussian free fields is also covered.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube