Papers
Topics
Authors
Recent
2000 character limit reached

Universal geometric cluster algebras from surfaces (1209.4095v3)

Published 18 Sep 2012 in math.RA, math.CO, and math.RT

Abstract: A universal geometric cluster algebra over an exchange matrix B is a universal object in the category of geometric cluster algebras over B related by coefficient specializations. (Following an earlier paper on universal geometric cluster algebras, we broaden the definition of geometric cluster algebras relative to the definition originally given Fomin and Zelevinsky.) The universal objects are closely related to a fan F_B called the mutation fan for B. In this paper, we consider universal geometric cluster algebras and mutation fans for cluster algebras arising from marked surfaces. We identify two crucial properties of marked surfaces: The Curve Separation Property and the Null Tangle Property. The latter property implies the former. We prove the Curve Separation Property for all marked surfaces except once-punctured surfaces without boundary components, and as a result we obtain a construction of the rational part of F_B for these surfaces. We prove the Null Tangle Property for a smaller family of surfaces, and use it to construct universal geometric coefficients for these surfaces.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.