2000 character limit reached
Inequality for Variance of Weighted Sum of Correlated Random Variables and WLLN (1209.2275v8)
Published 11 Sep 2012 in math.PR, math.ST, and stat.TH
Abstract: The upper bound inequality for variance of weighted sum of correlated random variables is derived according to Cauchy-Schwarz's inequality, while the weights are non-negative with sum of 1. We also give a novel proof with positive semidefinite matrix method. And the variance inequality of sum of correlated random variable with general weights is also obtained. Then, the variance inequalities are applied to the Chebyshev's inequality and sufficient condition of weak law of large numbers (WLLN) for sum of correlated random variables .
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.