Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Space-Time Trade-offs for Stack-Based Algorithms (1208.3663v5)

Published 17 Aug 2012 in cs.CG and cs.DS

Abstract: In memory-constrained algorithms we have read-only access to the input, and the number of additional variables is limited. In this paper we introduce the compressed stack technique, a method that allows to transform algorithms whose space bottleneck is a stack into memory-constrained algorithms. Given an algorithm \alg\ that runs in O(n) time using $\Theta(n)$ variables, we can modify it so that it runs in $O(n2/s)$ time using a workspace of O(s) variables (for any $s\in o(\log n)$) or $O(n\log n/\log p)$ time using $O(p\log n/\log p)$ variables (for any $2\leq p\leq n$). We also show how the technique can be applied to solve various geometric problems, namely computing the convex hull of a simple polygon, a triangulation of a monotone polygon, the shortest path between two points inside a monotone polygon, 1-dimensional pyramid approximation of a 1-dimensional vector, and the visibility profile of a point inside a simple polygon. Our approach exceeds or matches the best-known results for these problems in constant-workspace models (when they exist), and gives the first trade-off between the size of the workspace and running time. To the best of our knowledge, this is the first general framework for obtaining memory-constrained algorithms.

Citations (52)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.